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Abstract  

In yon Neumann's theory an incomplete observable A is measured by measuring any 
complete observable B whose function A is. This procedure is narrowed down in this 
paper by the additional requirement of preservation of the sharp value of any observable 
compatible with A. The requirement is shown to be equivalent to the unique change of 
state: o ~ (tr OPn)-lPnPPn (Pn is the eigenprojector of A corresponding to the obtained 
eigenvalue an, P is the statistical operator of the initial state, and by assumption tr PPn > 0). 
This characterises the minimal-disturbance measurement. A necessary and sufficient con- 
dition is derived for the selection of the above observable B so that its measurement 
implies the minimal-disturbance measurement of A. For arbitrary p and A, there exists 
a B satisfying the condition. Hence, this constitutes a reasonable specification within von 
Neumann's theory, reducing the latter to the physically preferable minimal-disturbance 
measurement theory. 

1. Introduction 

If we have a quantal ensemble of  physical systems which is described by a 
statistical operator p, we say, for simplicity, that we deal with a system in the 
state P. A system has a sharp real value d of  an observable D in the state p if 

((D - d) z ) = tr p (D - d) 2 = 0 (1.1) 

( ' t r '  denoting the trace). 

Lemma. A physical system has the sharp real value d of  the observable D 
the state p if for some decomposition of  the latter into pure states 

P = 2k wkl~k)(akl  (wk> 0, V k ; E k w  k = 1 ; the number of  terms finite or 
infinite), the eigenvalue equations 

D l a k ) = d l a k ) ,  VK (1.2) 
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are satisfied, and only if (1.2) are valid for every decomposition o fp  into pure 
states. 

Proof. The sufficiency of equations (1.2) for the system to have the sharp 
value d of D in p is immediately seen. I f p  = ~kwkl ak)(ak I is an arbitrary 
decomposition of p into pure states, then equation (1.1) implies 

0 =  ~ w k ( a k l ( D - - d ) 2 l a k )  = ~ wkll(O -d ) l ak>[ [  2 
k k 

(where '11... I1' denotes the norm), which has equations (1.2) as its immediate 
consequence. Q.E.D. 

Remark 1. The sharp real value d of D in p necessarily equals the expecta- 
tion value: d = (D)  = tr pD, and the measurement of D in p produces the result 
d with certainty. 

According to yon Neumann (1955, p. 220), in order to be able to perform 
an exact measurement of an observable A, this has to have a purely discrete 
spectrum. Let the unique spectral forint of A be 

A = anen (1.3) 
n 

where a n are the distinct eigenvalues of A, and Pn are the corresponding eigen- 
projectors. The degeneracy of an is tr Pn >~ 1. Let p be the initial state of the 
system, and let N be the sufficiently large number of physical systems in the 
quantal ensemble described by p. As is well known, the standard concept o f  
measurement (von Neumann, 1955) is based on the following two requirements: 

Requirement 1. Having measured A, one may group the N systems into 
non-overlapping classes enumerated by n and containingNn systems each 
(~nNn = N), so that i fNn > 0, the N n systems form a quantal sub-ensemble 
in which A has the sharp value a n. 

Requirement 2. For each n, one has with sufficient accuracy Nn/N ~ tr PPn 
(the probability to obtain an measuring A in p). 

If  tr Pn = 1, V n in equation (t .3), or, as it is said, A is a complete observable, 
then for each a n there exists a (up to a phase factor) unique normalised eigen- 
state [ ~n ), so that A = ~n an I ~n ) (~n [ (all an distinct). Utilising the standard 
connection between the decomposition of an ensemble and that of the corre- 
sponding statistical operator (iV = ~nNn ~ p = Y, n W n P n ,  W n ~- - -Nn/N) ,  it is 
easy to see that Requirements 1 and 2 are in this case equivalent to the follow- 
ing unique form of the statistical operator describing the entire ensemble after 
the measurement: 

(~n IP ICn)]¢n)(~0n I (1.4) 
t/ 

"~ We call 'unique' that spectral form of an observable A with a purely discrete 
spectrum in which no repetition of eigenvalue occurs and the projectors add up to 1. 
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IfA is an incomplete observable, i.e., if it is not in itself a complete set of 
commuting observables, like in the case just mentioned, then yon Neumann 
(1955, p. 348) introduces a complete observable B: 

zn 
B ~  ~ ~ bn, il~n,i)(~n,i t (1.5) 

n i=1 

all bn, i distinct, so that 

/n 
[~on, i)(Son, il=Pn, V n (1.6) 

i=-I 

(In = tr Pn is an integer or oo). t Relation (1.6) is tantamount to 

A =f(B)  (1.7) 

where ' f ( . . . ) '  designates an operator function. 
The application of expression (1.4) to the case of measuring B, after replacing 

n by n, i, gives: 

p'(B) = ~ (tr p-Pn)p~n(B) (1.8) 
// 

with 
In 

Pn(B) = ~ ((~n,i IP [¢n,i)/tr PPn) [~n,i)(~n,i [ 
i=1  

Owing to (1.6), 

(1.9) 

/n 
tr PPn = ~ (~n,i[Pl¢n,i) (1.10) 

i=1  

In equation (1.9) by assumption tr PPn > 0, otherwise p'n(B) is not defined. 
Von Neumann (1955) calls the process giving rise to the transition 

p -+ p'(B) 'process one'. Using a more modern terminology, we refer to this as 
to the non-selective measurement of A in p; and for the transmon p Pn(B) 
we say that it is due to the selective measurement of A in p corresponding to 
the eigenvatue a n. 

One concludes from equations (1.8), (1.9) and (1.6) that p'(B) satisfies the 
above two requirements for the measurement of A because tr PPn stands for 
Nn/N, and in each P'n(B) the system has the sharp value a n ofA (cf. the lemma). 
Thus, the measurement of A can be performed via measuring any B (satisfying 
equations (1.5) and (1.6)), though neither the selection orB nor the ensuing 
changed state p'(B) is unique, in general. So far the quantal theory of measure- 
ment of yon Neumann. 

"~ For simplicity we assume that the Hilbert space of the system is finite o1" countably- 
infinite dimensional. 
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2. Minimal-Disturbance Measurement 

The question arises: what is the role played by an incomplete observable A 
in quantum mechanics? The answer is well known: one forms a sequence of 
compatible observables D, A . . . .  to achieve a complete set. This enables one 
to arrive at a pure state whenever one has a sequence of corresponding eigen- 
values, i.e., sharp values: d, a n . . . .  , which are achieved by performing a 
succession of  measurements (of  D, A, etc.). For this accumulation of sharp 
values, it is indispensable that each measurement should preserve the ones 
already acquired by the system in the previous measurements of compatible 
observables. Therefore, one has to complete the concept of  measurement of a 
general observable A (with a purely discrete spec t rum)by  adding the following 
requirement to the above two. 

Requirement 3. I f  a physical system in a state/9 has the sharp real value d 
of an observable D, and if this observable is compatible with the measured 
observable A, then whichever result a n of the measured observable A is 

t 
obtained, the N n systems having produced this result have to be in a state Pn 
in which the sharp value d of  D is preserved. 

Theorem 1. A. If  the measurement of  an observable A - w h o s e  spectral 
form is given by equation (1.3)-satisfies Requirements 1 and 3, then an 
arbitrary state p is changed into the state 

r 

Pn = (tr pPn)-IPnPPn (2.1) 

in the selective measurement of  A corresponding to the eigenvalue an when- 
ever tr PPn > O. 

B. If  tr PPn > 0 implies equation (2.1) for the change of state, then Require- 
ment  3 is valid. 

Before we prove the theorem, let us point out that, as a consequence of 
equation (2.1) and Requirement 2, the non-selective measurement of A in P 
results in the state 

t 
' = ~ (tr PPn)Pn ~ PnpP n (2.2) /9 = 

n n 

Further,  if the initial state is pure: p = I ~b > < ~ [ (1 ff > being a normalised state 
vector), then equation (2.1) boils down to 

l~n>=<~ Ien I ~>-l/Zen I~ > (2.3) 
(assuming < ~ Ienl qJ > > 0), where [ fin)( fin [ plays the role of P'. 

Proof. A. We perform the proof  in two steps. First we demonstrate the 
special case of  equation (2.3), then we generalise to equation (2.1). 

Let us assume that p = [ ~ > < ff t. Renumerating by m the non-zero ones of  
the projections Pn[ ~b >, n = 1, 2 , . . . ,  we define 

I~m>=--<~lemlqJ>-'/Zeml~>, r e = l , 2  . . . .  (2.4) 
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and 

O =- ~ !Vm)(Vrnl  (2.5) 
m 

Since one can write I ~ } = Y-'m( t~ IPm 1V )1/21Cm ), obviously 

D I ~  ) = IV} (2.6) 

i.e., in the state p = I ~ )(~ l the observable D has the sharp value t. On the 
other hand, equation (2.5) implies [D, Pn]- = O, V n, and, owing to equation 
(1.3), this leads to 

[D, A 1_ = 0 (2.7) 

i.e., D is compatible withA. Then, by Requirement 3, D has the sharp value 1 
¢ t 

also in every Pn with n such that (V IPn IV ) >  O. By Requirement 1, in Pn the 
observable A has the sharp value a n. Let P'n = £k  wk[ak ) (~k l  be an arbitrary 
decomposition of Pn into pure states. There exists at least one such decomposi- 
tion, viz., the spectral form of Pn, because each statistical operator has a 
purely discrete spectrum (yon Neumann, 1955, p. 329). 

According to the lemma, the mentioned sharp values in Pn imply D t C~k) = 
I ak ), '¢ k, and A [ a k)  = an I O~k), V k. The latter equations are equivalent to 
Pn [ ak ) = [ Oek ), V k. As a consequence, 

P~D I o~k > = I ~R >, V k 

From equation (2.5) one can see that 

PnD=ILk,.,>(V,,I, if(ff IP. IV>>O 

(2.8) 

(2.9) 

Hence, taking once more resort to the lemma, we conclude from equation 
(2.8) that in P'n the observable t Cn )( Vn I has the sharp value 1. This is possible 
only ifP~2 = I ~n )( Vn 1, where I q)n ) is defined by equation (2.3). 

In operator form equation (2.3) can be written 

p" =<~ tP. IV  >-~P.IV ><~p tP. (2.10) 

for p = l tP >< ~ l. 
Now, let the initial state p be, in the terminology of D'Espagnat (1971), a 

proper mixture, in which there are admixed, e.g., K pure states:t 

K 

p= ~ WktVk><¢kl (2.11) 
k = l  

(w k :> 0, V k; ~;kWk = 1). Let p describe a quantal ensemble of N physical 
systems, and I Vk ) ( Ck I that of Ark of them (N = 2;K= 1 Ark, Nk  sufficiently 
large, V k; N a / N  ~ wk).  The selective measurement of A corresponding to an 

K is necessarily finite because one cannot prepare a mixture containing an infinite 
number of  pure states. One may admit formally K = oo in proper mixtures extending to 
this case by stipulation the formulae for finite K. 

t4  
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in the initial state p results in, say, N n systems (N = ~nNn), of which Am (k) 
stem from the N k initial ones: 

K 
N n = ~ N (k) (2.12) 

k=l 

If an is detectable in p, the N n systems are described by the so far unknown 
statistical operator Pn, and the Nn (x) systems by 

Pn (k) -- ( ~tc [Pn I t )k) - lPn 1 ~k ) ( ~lc tPn ( 2 . t 3 )  

(cf. equation (2.10) with 1~ ) = [ ~k)), unless N(e) = 0 (i.e., <~/k IG I G>--0). 
All we need are the weights w~c in the decomposition of the statistical operator 

t 
Pn: 

K 
t t t k 

Pn = E wkP'n ( ) (2.14) 
k = l  

which corresponds to equation (2.12) (in case pn (k) is not defined, w~ has to 
be zero). Evidently, w'k ~ N(k)/Nn (an is assumed detectable in p, i.e., 
N n > 0). Since 

N(k)/Nn = (N(nk)/Nk)(Uk/N)(N/Xn) (2.15) 

and N(X)/Ne ~ ( ~e IPn l ~e ), N e / N  ~ w e, N/Nn ~ (tr pPn) -1, we have 

w' k = ( t~lc IPn [ d/k )we(tr pPn) -1 (2.16) 

I fN (e) = 0 (pn (e) undefined), then (~e [Pn I~0k) = 0, and via equation (2.16) 
w~ = 0 as required. The detectability of an in p means tr PPn > 0, so that 
equation (2.16) is consistent. Finally, we obtain from equations (2.14), (2.16), 
(2.13) and (2.11): 

Pn = ~ < ~Oe I/°n I ~Ok )wk(tr pPn) -1 < ~Ok I P~ [ @k ) - lpn ] @tc. } ( @k I en 
k 

= (tr pPn)-lPnPPn 

which is the claimed expression (2.1). 

Now let the initial state be, in the terminology of D'Espagnat (1971), an 
improper mixture, i.e., let p be actually the reduced statistical operator Pl 
of a composite system (consisting of subsystems 1 and 2) in a pure state 
14q2>: 

01 = tr2[ ~b12)(~121 (2.17) 

('tr2' denoting the partial trace over all the coordinates of the second sub- 
system). Then the observable A is actually a first-subsystem observable A a, 
i.e., one measures A x @ 12 in the state I~b12) to obtain 

= < 4,12 I I"t') l ) - l  e f ' )  l > < 4,1= Ief ") (2.18) 
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in the selective measurement corresponding to an (cf. equation (2.10), and 
note that in equation ( t .3)Pn is replaced by Pl(n)). What equation (2.18) 
implies for the first subsystem is derived by the partial trace over the 
coordinates of the second subsystem. One obtains 

p,l(n) = (trl p}n) p 1)-1pin)piP[n) (2.19) 

Namely, the probability to obtain an in [ ~12), i.e., (¢12 [p~n) [ ~12 ) equals 
tr I Pin)p1, as well known; and first-subsystem observables, such as pfn)  can 
be taken outside the partial trace over the second subsystem. Equation (2.19) 
again equals (2.1). 

Finally, let us consider the case of a proper mixture of pure composite 
states p 12 = •K= 1WktO~k~ ) ( ~ k ~  [. For the first subsystem this implies the 
reduced statistical operator P l = ~ = 1  wkP~ x), where p~k) = tr2 [¢tk~)(¢~k~ 1, 
which is a proper mixture of improper mixtures. Now, if we measure the 
first-subsystem observable A 1 and obtain an, the effect on Pl equals that on 
P12 with subsequent reduction to the first subsystem: 

P ,2 -+ (tr 12 Ptn)P lZ) -1Ptn)P 12P} n) -+ (trl Ptn)P 1) -1P}n)p 1pin) 

as asserted in (2.1). This completes the derivation of (2.1) in the general case. 
B. To prove the second claim in Theorem 1, we assume tr p(D -- d)  2 = 0, 

d real. Since 2nPn = 1 (cf. equation (1.3)), one has £nn' trPnPPn'(D - d) 2 = 0. 
Assuming further that [D, Pn'] = O, Vn' (equivalent to [D, A] = 0), we 
have Nnn' tr PnPn'P(D - d) 2 =0.  As PnP n' = 6nn'Pn, one further obtains 
2; n tr Pno (D - d)aPn = O. Owing to tr Pn O (D - d)2Pn = tr (D - d)PnpP n (D - d) 
~> 0 (b e cause ( u I (D - d )P.  PPn (D - d) [ u ) = I! p 1/2pn (D - d) [ u )[12 >>. O, 
V l u )), one finally has tr PnpPn(D - d) 2 = O, V n, leading to 

tr p'n(D - d) 2 = 0 (2.20) 

whenever tr PPn > 0 (On defined by (2.1)). In conjunction with the assump- 
tions made, equation (2.20) is obviously equivalent to Requirement 3. Q.E.D. 

Measurement involving the change of state given by equation (2.1) has 
come to be called minimal-disturbance measurement. Reasons for this term 
(besides Requirement 3) will be apparent in Section 4. 

3. The Specification Required in Von Neumann's Theory 

Before we come back to von Neumann's theory, outlined in the Introduc- 
! t , 

tion, let us note the fact that the statistical operators Pn and p ,  determined by 
equations (2.1) and (2.2) respectively, commute with each eigenprojector Pn' 

t 

of A, and hence also with A itself. In the state On the observable A has the 
sharp value an, therefore, making use of the lemma, one may conclude that 
every eigenvector of p" corresponding to a positive eigenvalue is also an eigen- 

t vector of A, corresponding to a n, UtiIising this explicitly, if tr pin > O, Pn 
can be written in the spectral form 

Sn 
t t 

Pn = ~ rn, sQn, s (3.1) 
s = l  
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where all eigenvalues r'n,s are distinct, and the orthogonal projectors Qn, s add 
up to Pn: 

Sn 
E Qn.s = Pn (3.2) 

S = I  

(Sn <~ tr Pn is an integer or 0% 
One should note that for rn, s > O, Qn, s is the corresponding eigenprojector 

o f p ' ;  ifr~ so = 0 (which may appear), then Qn so=Pn -- Ns#s^Qn,s, and 
(Qn, so + 1 S Pn) is the eigenprojector Of Pn corresponding to t~e eigenvatue 
z e r o .  

Equations (2.2) and (3.1) entail for p' the spectral form 

S n 

P'= E trPPn E r'n, sQn, s (3.3) 
n $=1  

If n is such that tr PPn = 0, then we put Sn = 1, In, 1 = O, and Qn, 1 = Pn. In 
this way, equation (3.2) is valid for all n. Further, the decomposition of the 
identity 

Srl 

~ Qn,,= l (3.4) 
n s = l  

is the unique common eigen-decomposition corresponding to A and p' 
(distinct Qn,s correspond to distinct pairs of eigenvalues an, r'n,s of A, p'). 

Now we can raise and answer the question if, for an arbitrary initial state 
p and an arbitrary observable A, there exists a complete observable B, 
restricted by (1.6), whose measurement would lead via equations (t.8) and 
(1.9) to the minimal-disturbance measurement expression of p' (given by 
(2.2)). The answer is affirmative. 

Theorem 2. Equation (1.8) takes the form (2.2) if and only if the complete 
observable B, whose non-selective measurement in P gives (1.8), has the 
spectral form 

Sn Tn, s 

B= ~ ~ ~ bn, s, tl~o,,s,t)<~n,~,tl (3.5) 
n s = l  t = l  

(all bn,  s, t distinct), so that 

Tn, s 

I ~,,,~,t ><~o.,~.t I = Qn, s, 
t = l  

V s, Vn (3.6) 

(Tn.s = tr Qn, s). For any p and any A with a purely discrete spectrum, there 
exists a B of this form. 
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Proof. Sufficiency. For any B given by (I .5) with (1.6), one can rewrite 
(1.8) in the form 

In 
p'(g)= ~ ~ (~n, i l P ' l ~ n , i ) l ~ n , i ) ( ~ n ,  il (3.7) 

n i = l  

with P' defined by (2.2). This is due to the fact that ( t .6 )  implies 

en  I~o., i > = 5n. '  I ~..,' >, V n ,  n ' , i  (3.8) 

Let B satisfy (3.5) with (3.6). (Note that the latter implies via (3.2) the 
restriction (1.6).) Then we can replace i by s, t in (3.7): 

Sn rn, s 
P'(B)=2 2 2 (~n,s, tlP'l~Pn, s,t)l~,n,s,t)(¢n,s, tl (3.9) 

n s '= l  t = l  

Equations (3.6) and (3.3) tell us that the l~n s t) are eigenvectors of  p', so 
that the right-hand side of (3.9) equals p ,  as claimed. 

Necessity. Let us assume that p' = p'(B),  and that B is given by equation 
( t .5)  with (1.6). Replacing here p'  from (2.2), t h e P  n from (t .6) ,  and p'(B) 
from (1.8) with (1.9), we can write 

rn zn 
Y. Y. Y.l~.,;'>(~.,ctpl~.,f)(~.,fl 
n i '=  1 J ' = l  

Zn 
= Y. ~ <~n,;'lpl~.,c>l~.,;')<~.,cl 

n i~=1 

Taking the matrix element (¢n,i [. • • I¢n,] ) of  both sides, one has 
(~on, i l P ) ~ , j )  = O, i f i ~ ] .  Owing to (3.8) and (2.2), one can write this as 
(~On, i lP I~n,j) = O, i ~ ] ,  or, due to the quasidiagonality o f p '  in n (cf. (2.2)), 
one finally has 

<~.,ilp' I~n,j>-- 0 i fn : /=n 'or i : /=]  (3.10) 

Equation (3.10) means that {I ~n,~'), i = 1, 2 . . . . .  ln, n = 1, 2 . . . .  } is an 
eigenbasis ofp ' .  On the other hand, (1.6) and (1.3) mean that this same basis 
is an eigenbasis of A, i.e., it is a common eigenbasis of A and p'. Hence, each 
basis element belongs to the range of  some Qn, s from (3.4), and we can relabel 
the basis elements with n, s, t to obtain the spectral form (3.5) with (3.6) 
valid for B as asserted in Theorem 2. 

That for every p and A there exists a B satisfying (3.5) with (3.6) follows 
from the fact that the commuting projectors Qn, s, s = 1, 2 , . . . ,  Sn, n = I, 2 , . .  
certainly have a simultaneous eigenbasis { I ~n, s, t ), t = 1, 2 . . . . .  Tn, s, 
s = 1, 2 . . . . .  Sn, n = 1,2 . . . .  } (and the bn, s, t are arbitrary distinct real 
numbers). Q.E.D. 
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The condition in Theorem 2 is a specification in von Neumann's theory of 
measurement in the sense that, in general, it eliminates some 'wrong' B's 
(satisfying (1.5) and (1.6) but  not (3.5) and (3.6)), leaving a non-empty set 
of 'good' B's, the measurement of each of which performs the measurement 
of A in accordance with all three requirements. 

Remark 2. The necessary and sufficient condition on the complete 
observable B formulated in Theorem 2 can be put in the form 

A = f(B), p' = g(B) (3.11) 

where ' g ( . . . ) '  denotes an operator function just like ' f ( . . . ) '  (cf. (1.7)). 

Remark 3. The selection of the 'good' B's depends on the initial state O 
(through/9'). Nevertheless, the change of state p -~ p' = EnPnPP n in minimal- 
disturbance measurement 'knows nothing' about the B by means of  which 
the measurement was performed. The measured observable A associates (via 
its eigenprojectors Pn) with every p a unique p'. It is natural to stipulate with 
Lfiders (1951) that to this operator map p ~ p'  there corresponds a unique 
laboratory procedure (depending only on A not on p), which brings about 
the incomplete measurementt of A in any initial state. For every given p this 
measurement is then equivalent to the complete measurement of  any 'good' 
B. 

For a pure initial state [ ~b >, p' takes the form 

p'= ~ <~v IPn 17~>1 ~n><4J, l (3.12) 
n 

where [ ~n > is given by (2.3). In this case the condition on the 'good' B's 
is particularly simple: 

Corollary. For a pure initial state p = [ ~O > < ~ 1, one has p'(B) = p' if and 
only if one restricts the choice of the complete observable B (specified by 
(1.5) and (1.6)) by the following additional requirement: For every value of  
n such that < ff [Pn [ ~ > > 0, there exists a value of i, say i o, for which 

I~°n, io) = eiXn] ~n) (3.13) 

(cf. (2.3)), and the phase factor is arbitrary. 

4. Relation to the Literature 

As explained in the Introduction, yon Neumann's theory reduces the 
measurement of any observable to a complete measurement. The correctness 
of this procedure was challenged by Liiders (1951), who postulated expression 
(2.2) in conjunction with (I .3) for incomplete measurement. 

t 'Incomplete measurement" actually means measurement of an incomplete 
observable. But, rejecting the 'wrong' B's, because their measurement violates Requirement 
3 for A, one may use this term as a synonym for minimal-disturbance measurement. 
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Wigner, who was perhaps unaware of Ltiders' work, and who equally felt 
the need to introduce direct incomplete measurement, was said to have 
arrived at the I ~ ) -> I fin ) transition via an argument of maximal overlap, 
which he stated to be 'morally best' (Goldberger & Watson, 1964). 

Bell & Nauenberg (1966) accepted Wigner's ethical term for his essentially 
variational concept, and spoke of a moral measurement, causing D'Espagnat 
(1971) to follow them. They pointed out that the l~ ) -~ [~n) transition 
could be obtained from the requirement: IfA and D commute (compatible 
observables) and a n and dm are their respective eigenvalues, the probability 
to obtain an, dm should be the same irrespectively whether one performs a 
joint incomplete measurement of A and D in [ ~ ), or one does their incomplete 
measurements in immediate succession. 

In an earlier paper, this author (Herbut, 1969) presented two derivations 
of formula (2.2) unaware of the mentioned references except of Lfiders' (t 951) 
pioneering work. The first derivation was along variational lines. It was based 
on the fact that statistical operators p belong to the Hilbert space of all linear 
Hilbert-Schmidt operators acting in the Hilbert space of state vectors,t and 
thus there exists a natural concept of distance between two statistical operators. 
The change p -+ p' was required to minimise the p, p'-distance under Require- 
ment 1 as a restriction. In accordance with these ideas, the incomplete measure- 
ment of A was called its minimal measurement. 

The second derivation of Lfiders' formula (2.2) (Herbut, 1969) required 
the expectation values before and after the measurement of A, i.e., tr pD and 
tr p'D, to coincide i fD is compatible with A. It is straightforward to convince 
oneself that this requires in terms of the entire ensemble after the measurement 
and the expectation values the same thing as Bell & Nauenberg (1966) required 
in the language of the resulting subensemble corresponding to a n (i.e., Pn), 
and the probabilities. Both these derivations are essentially based on the idea 
that measurement should not destroy information on compatible observables. 
The approach founded on this idea is an alternative to the variational one. 

The derivation of (2.2) given in Theorem 1 in this paper belongs to the 
conceptual framework of the compatibility approach. It requires physically 
and logically the least, because the class of all observables D having a sharp 
value d in the initial state and being compatible with A, is a very restricted 
subclass of the class of all observables compatible with A. On the other hand, 
Requirement 3 has the same advantage as Requirement 1, both can be put in 
terms of properties of individual physical systems since sharp values in an 
ensemble can be interpreted as belonging to each element (each individual 
physical system) in the ensemble. 

The main result of this paper is Theorem 2 showing that minimal-disturbance 
measurement theory is not a rival to yon Neumann's theory, but rather a 
natural elaboration of the latter in the sense of Requirement 3 (leading via its 
equivalent (2.2) to the necessary and sufficient condition on 'good' B's). 

t The space of the linear Hilbert-Schmidt operators is called superspace and is made 
extensive use of in George, C., Prigogine, I. and Rosenfeld, L. (1972). Dan. Vid. Selsk. 
mat.-fys. Medd. 38, No. 12. 
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